Машина тьюринга является. Алгоритмы

Если вы не учились профессии программиста в вузе или не ходили в специальную школу, то, возможно «Машина Тьюринга» для вас просто дешифратор из курса истории или фильма «Игра в имитацию». В действительности всё немного сложнее, любому уважающему себя программисту необходимо знать и понимать, что это такое.

Что такое машина Тьюринга

Для того, чтобы представить простейшую машину Тьюринга, взглянем на её художественную реализацию:

Это бесконечная лента, не имеющая ни начала, ни конца, поделённая на ячейки. Для работы с ней мы используем некое управляющее устройство (автомат), для визуализации выбрана каретка. В каждый момент времени она имеет состояние qj и считывает содержимое ячейки ai. О том, что происходит в остальной части ленты, каретка не знает, соответственно оперировать она может только текущими данными. Всего возможно три типа действий, зависящий от этой композиции:

  • выполнить сдвиг на соседнюю ячейку;
  • записать в текущую новое содержимое;
  • изменить состояния.

Что-то похожее реализовано в электронных таблицах: там тоже условно неограниченное поле, вы можете изменить значение ячейки, изменить действие или перейти на другую ячейку.

Множества A = {a0, a1, ..., ai} и Q = {q0, q1, ..., qj} являются конечными, a0 – символ пустой ячейки, q1 – начальное состояние, q0 – пассивное состояния, условие выхода машины из цикла.

Создадим таблицу для реализации алгоритма Тьюринга:

Символами _Л, _П, _Н обозначим направление движения автомата – соответственно сдвиг «влево», «вправо» или неподвижное положение.

Пусть наша лента выглядит так:

Начальное положение – крайняя правая ячейка, остановка – в пустой клетке. Догадались как она будет выглядеть после завершения алгоритма?

На указанном примере всё выглядит довольно просто. Можете поиграть с увеличением алфавита, преобразованием состояний, помещением начальной позиции не в крайнюю позиции, условиями выхода из цикла и т.д. Фактически, практически любую задачу преобразования можно решить с помощью машины Тьюринга.

Зачем это программисту

Машина Тьюринга позволяет размять мозги и взглянуть на решение задачи иначе. В конечном счёте, с той же целью следует познакомиться с:

  • нормальным алгоритмом Маркова;
  • лямбда-вычислениями;
  • языком программирования Brainfuck.

Но машина Тьюринга – базовая теория алгоритмов, которая помогает думать не столько о средствах языка, сколько о различных путях решения задачи. Для профессионального роста – это необходимый навык.

Полнота по Тьюрингу

Ещё один важный вопрос, связанный с именем известного математика. На форумах и в статьях вы неоднократно могли видеть выражение «полный\не полный язык программирования по Тьюрингу». Ответ на вопрос «что это означает?» возвращает нас к описанной выше теории. Как уже было сказано, машина Тьюринга позволяет выполнить любое преобразование, соответственно, вы можете реализовать на ней абсолютно любой алгоритм или функцию. То же самое относится и к языкам. Если с его помощью вы можете реализовать любой заданный алгоритм – он тьюринг-полный. Если в дело вступают ограничения синтаксиса или любые физические – не полный.

Тест по Тьюрингу

Последний раздел никак не связан с машиной. Тест Тьюринга – игра, в ходе которой человек с помощью текстовых сообщений взаимодействует одновременно с машиной и другим человеком, не видя их. Задача машины – ввести участника в заблуждение.

Такой тест на долгие годы предопределил развитие ИИ – программы вроде Элизы или PARRY строились именно на копировании человеческого поведения машиной. Уже позднее, когда стало понятно, что путь тупиковый, вектор развития был сдвинут в сторону изучения механизмов интеллекта. Однако до сих пор тема «способна ли мыслить машина» лежит в основе многих тестов, романов и кинофильмов.

Алан Тьюринг остался в истории не только человеком, совершившим важное открытие во время Второй мировой войны, но и подаривший миру несколько фундаментальных теорий, которыми пользуется человечество до сих пор.

Скажем, давным-давно... А на самом деле до создания машины Тьюринга создавались машины для выполнения различных действий. Например, нужно взять логарифм, нука, а давайте-ка склепаем машинку, которая будет считывать число и брать логарифм. Или нужно, скажем, два числа сложить — вот вам и машина для сложения двух чисел. Да и сейчас существуют такие машины, например, калькуляторы. Что они могут делать? Складывать, вычитать, умножать, а инженерные — даже брать косинус или синус. Получается эти тупые машинки, кроме как записанные в них действия, исполнять ничего не могли и не могут.

Так вот было бы очень интересно создать такую машину, которая бы считывала не числа и не символы, а алгоритм, и выполняла бы его, то есть создать программируемую машину. Вот этим и занялся Тьюринг (скажу, что кроме тьюринговских таких абстракций много). И придумал модель такой машины. Оказалось, что для того, чтобы выполнять сложные алгоритмы всего-то нужна каретка, бесконечная лента, ну и возможность изменять значения, записанные на ленте и передвигаться по ней. Получается, что эта абстракция фактически может быть превращена в настоящую машину, единственное, с тем ограничением, что обеспечить машину бесконечной лентой мы не можем, но зато можно сделать очень длинную ленту;)

Отступление. Собственно, как работает машина Тьюринга, рассказывать ни к чему, как я уже сказала, это можно найти очень легко. Поэтому будем полагать, что вы уже знаете, как она работает.

Ну какие-то просты алгоритмы машина Тьюринга выполняет, это бесспорно. Но как насчет сложненьких? А, например, как бы организовать цикл с помощью МТ? Или как сообразить ветвление? Оказывается, существуют теоремы, которые доказывают то, что МТ может выполнять циклы и ветвления, что говорит нам, что с помощью очень простого механизма можно составлять программы из простых блоков типа ветвления и циклов, а значит, можно запрограммировать все, что может быть запрограммировано. И тут по идее должен идти кусок объяснения того, что существуют и невычислимые функции, а следовательно, неразрешимые задачи, и эти задачи нельзя решить с помощью МТ. Вот как.

Но круче машины Тьюринга никто ничего не придумал, поэтому все языки программирования, которыми мы сейчас пользуемся могут запрограммировать не больше, чем машина Тьюринга. Отсюда появилось понятие полноты по Тьюрингу, что означает, что язык (или что-либо другое) полный по Тьюрингу в том случае, если на нем можно записать все алгоритмы, работающие на машине Тьюринга. И доказать, что язык — полный по Тьюрингу можно, написав на нем эмулятор машины Тьюринга. Вот такие пироги.

С точки зрения математики пост — фуфло, зато понятно, нафига нам оказалась нужна машина Тьюринга. Ну и вообще-то писать алгоритмы под эту машину — интересная головоломка. Верю тем, кто говорит, что после программирования exp(x) на машине Тьюринга, он действительно понял, что такое алгоритм. Пока не пробовала, но это интересная задачка.

Машина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.

Алан Тьюринг стремился описать наиболее примитивную модель механического устройства, которая имела бы те же основные возможности, что и компьютер. Тьюринг впервые описал машину в 1936 году в статье "О вычислимых числах с приложением к проблеме разрешимости", которая появилась в Трудах Лондонского математического общества.

Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений. Из чего состоит устройство Каждая такая машина состоит из двух составляющих: Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки. Автомат – управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.

Каждая машина связывает два конечных ряда данных: алфавит входящих символов A = {a0, a1, ..., am} и алфавит состояний Q = {q0, q1, ..., qp}. Состояние q0 называют пассивным. Считается, что устройство заканчивает свою работу, когда попадает именно на него. Состояние q1 называют начальным - машина начинает свои вычисления, находясь на старте в нем. Входное слово располагается на ленте по одной букве подряд в каждой позиции. С обеих сторон от него располагаются только пустые ячейки.

Как работает механизм

Машина Тьюринга имеет принципиальное отличие от вычислительных устройств – ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма. Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.

Свойства механизма

Машина Тьюринга, как и другие вычислительные системы, имеет присущие ей особенности, и они сходны со свойствами алгоритмов: Дискретность. Цифровая машина переходит к следующему шагу n+1 только после того, как будет выполнен предыдущий. Каждый выполненный этап назначает, каким будет n+1. Понятность. Устройство выполняет только одно действие для одной же ячейки. Оно вписывает символ из алфавита и делает одно движение: влево или вправо. Детерминированность. Каждой позиции в механизме соответствует единственный вариант выполнения заданной схемы, и на каждом этапе действия и последовательность их выполнения однозначны. Результативность. Точный результат для каждого этапа определяет машина Тьюринга. Программа выполняет алгоритм и за конечное число шагов переходит в состояние q0. Массовость. Каждое устройство определено над допустимыми словами, входящими в алфавит. Функции машины Тьюринга В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В – слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.-

Программа для устройства

Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.

Составляющие для вычислений

Чтобы построить машину Тьюринга для решения одной определенной задачи, необходимо определить для нее следующие параметры. Внешний алфавит. Это некоторое конечное множество символов, обозначающихся знаком А, составляющие элементы которого именуются буквами. Один из них - а0 - должен быть пустым. Для примера, алфавит устройства Тьюринга, работающего с двоичными числами, выглядит так: A = {0, 1, а0}. Непрерывная цепочка букв-символов, записываемая на ленту, именуется словом. Автоматом называется устройство, которое работает без вмешательства людей. В машине Тьюринга он имеет для решения задач несколько различных состояний и при определенно возникающих условиях перемещается из одного положения в другое. Совокупность таких состояний каретки есть внутренний алфавит. Он имеет буквенное обозначение вида Q={q1, q2...}. Одно из таких положений - q1 - должно являться начальным, то есть тем, что запускает программу. Еще одним необходимым элементом является состояние q0, которое является конечным, то есть тем, что завершает программу и переводит устройство в позицию остановки.

Таблица переходов.

Эта составляющая представляет собой алгоритм поведения каретки устройства в зависимости от того, каковы в данный момент состояние автомата и значение считываемого символа.-

Алгоритм для автомата

Кареткой устройства Тьюринга во время работы управляет программа, которая во время каждого шага выполняет последовательность следующих действий: Запись символа внешнего алфавита в позицию, в том числе и пустого, осуществляя замену находившегося в ней, в том числе и пустого, элемента. Перемещение на один шаг-ячейку влево или же вправо. Изменение своего внутреннего состояния. Таким образом, при написании программ для каждой пары символов либо положений необходимо точно описать три параметра: ai – элемент из выбранного алфавита A, направление сдвига каретки ("←” влево, "→” вправо, "точка” - отсутствие перемещения) и qk - новое состояние устройства. К примеру, команда 1 "←” q2 имеет значение "заместить символ на 1, сдвинуть головку каретки влево на один шаг-ячейку и сделать переход в состояние q2”.

Машина Тьюринга - это совокупность следующих объектов

  • 1) внешний алфавит A={a 0 , a 1 , …, a n };
  • 2) внутренний алфавит Q={q 1 , q 2 ,…, q m } - множество состояний;
  • 3) множество управляющих символов {П, Л, С}
  • 4) бесконечная в обе стороны лента, разделённая на ячейки, в каждую из которых в любой дискретный момент времени может быть записан только один символ из алфавита А;
  • 5) управляющее устройство, способное находиться в одном из множества состояний

Символом пустой ячейки является буква внешнего алфавита а 0 .

Среди состояний выделяются начальное q 1 , находясь в котором машина начинает работать, и заключительное (или состояние остановки) q 0 , попав в которое машина останавливается.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы алфавита A. Управляющее устройство работает согласно командам, которые имеют следующий вид

q i a j > a p X q k

Запись означает следующее: если управляющее устройство находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то (1) в ячейку вместо a j записывается a p , (2) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если Х= П, или к обозрению следующей левой ячейки, если Х= Л, или же продолжает обозревать ту же ячейку ленты, если Х= С, (3) управляющее устройство переходит в состояние q k.

Поскольку работа машины, по условию, полностью определяется ее состоянием q, в данный момент и содержимым а обозреваемой в этот момент ячейки, то для каждой возможной конфигурации q i a j имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Поэтому программа машины Тьюринга с внешним алфавитом A={a0, a1, …, an} и внутренним Q={q1, q2,…, qm} содержит не более m (n+ 1) команд.

Словом в алфавите А или в алфавите Q, или в алфавите A Q называется любая последовательность букв соответствующего алфавита. Под k-ой конфигурацией будем понимать изображение ленты машины с информацией, сложившейся на ней к началу k-того шага (или слово в алфавите А, записанное на ленту к началу k-того шага), с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина. Имеют смысл лишь конечные конфигурации, т.е. такие, в которых все ячейки ленты, за исключением, быть может, конечного числа, пусты. Конфигурация называется заключительной, если состояние, в котором при этом находится машина, заключительное.

Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация.

Будем говорить, что непустое слово б в алфавите А {а 0 } = {a 1 , …, a n } воспринимается машиной в стандартном положении, если оно записано в последовательных ячейках ленты, все другие ячейки пусты, и машина обозревает крайнюю слева или крайнюю справа ячейку из тех, в которых записано слово б. Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q 1 (соответственно в состоянии остановки q 0).

Если обработка слова б переводит машину Тьюринга в заключительное состояние, то говорят, что она применима к б, в противном случае - не применима к б (машина работает бесконечно)

Рассмотрим пример:

Дана машина Тьюринга с внешним алфавитом А = {0, 1} (здесь 0 - символ пустой ячейки), алфавитом внутренних состояний Q = {q 0 , q 1 , q 2 } и со следующей функциональной схемой (программой):

q 1 0 > 1 Л q 2 ;

q 1 1 > 0 С q 2 ;

q 2 0 > 0 П q 0 ;

q 2 1 > 1 С q 1 ;

Данную программу можно записать с помощью таблицы

На первом шаге действует команда: q 1 0 > 1 Л q 2 (управляющее устройство находится в состоянии q1, а в обозреваемой ячейке записана буква 0, в ячейку вместо 0 записывается 1, головка сдвигается влево, управляющее устройство переходит в состояние q2), в результате на машине создается следующая конфигурация:

Наконец, после выполнения команды q 2 0 > 0 П q 0 создается конфигурация

Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки q 0 .

Таким образом, исходное слово 110 переработано машиной в слово 101.

Полученную последовательность конфигураций можно записать более коротким способом (содержимое обозреваемой ячейки записано справа от состояния, в котором находится в данный момент машина):

11q 1 0 => 1 q 2 11 => 1q 1 11 => 1q 2 01 => 10q 0 1

Машина Тьюринга - не что иное, как некоторое правило (алгоритм) для преобразования слов алфавита A Q, т.е. конфигураций. Таким образом, для определения машины Тьюринга нужно задать ее внешний и внутренний алфавиты, программу и указать, какие из символов обозначают пустую ячейку и заключительное состояние.

Введение

В 1936 г. Аланом Тьюрингом для уточнения понятия алгоритма был предложен абстрактный универсальный исполнитель. Его абстрактность заключается в том, что он представляет собой логическую вычислительную конструкцию, а не реальную вычислительную машину. Термин «универсальный исполнитель» говорит о том, что данный исполнитель может имитировать любой другой исполнитель. Например, операции, которые выполняют реальные вычислительные машины можно имитировать на универсальном исполнителе. В последствие, придуманная Тьюрингом вычислительная конструкция была названа машиной Тьюринга.

Целью данной курсовой работы является создание программы, реализующей машину Тьюринга на функциональном языке программирования Haskell. Для примера будет реализована машина Тьюринга, предназначенная для умножения десятичного числа на 2.

Чтобы достичь поставленной цели, необходимо решить следующие задачи: изучить принципы работы машины Тьюринга, её устройство, рассмотреть алгоритмически неразрешимые проблемы, выбрать структуру данных, описать реализуемые функции, а также привести примеры работы программы.

Основные положения машины Тьюринга

Машина Тьюринга (Turing machine) получила свое название по имени английского математика Алана Тьюринга, предложившего в 1937 г. способ формального задания алгоритмов с помощью некоторой абстрактной машины. Суть работы сводится к следующему. Имеется потенциально бесконечная лента, разбитая на ячейки, в каждой из которых может быть записан один символ из некоторого конечного алфавита. Машина Тьюринга имеет головку чтения/записи, которая позволяет прочитать символ в текущей ячейке, записать символ в ячейку, а также сдвинуть головку влево или вправо в соседнюю ячейку. Машина работает дискретно, по тактам и на каждом такте находится в одном из возможных состояний, которых конечное число. Для каждой пары (состояние, обозреваемый символ) определена тройка (записываемый символ, движение головки, новое состояние). До начала работы машина Тьюринга находится в начальном состоянии, а головка чтения-записи обозревает на ленте самую левую непустую ячейку. Таким образом, обозревая очередной символ, машина записывает новый символ (может быть, тот же самый), сдвигает головку влево, вправо или остается на месте и переходит в новое состояние или остается в прежнем.

Машина Тьюринга состоит из трех частей: ленты, считывающей (записывающей) головки и логического устройства, что наглядно показано на рисунке 1.

Лента выступает в качестве внешней памяти. Она считается неограниченной (бесконечной). Уже это свидетельствует о том, что машина Тьюринга является модельным устройством, поскольку ни одно реальное устройство не может обладать памятью бесконечного размера.

Рисунок 1 - Схема машина Тьюринга

Машина Тьюринга работает в некотором произвольном конечном алфавите A = {_, a1…an} - этот алфавит называется внешним. В нем выделяется специальный символ - _, называемый пустым знаком - его посылка в какую-либо ячейку стирает тот знак, который до этого там находился, и оставляет ячейку пустой. В каждую ячейку ленты может быть записан лишь один символ. Информация, хранящаяся на ленте, изображается конечной последовательностью знаков внешнего алфавита, отличных от пустого знака.

Головка всегда расположена над одной из ячеек ленты. Работа происходит тактами (шагами). Система исполняемых головкой команд предельно проста: на каждом такте она производит замену знака в обозреваемой ячейке ai знаком aj. При этом возможны сочетания:

1) аj = аi - означает, что в обозреваемой ячейке знак не изменился;

2) аi ? _, аj = _ - хранившийся в ячейке знак заменяется пустым, т.е. стирается;

3) аi = _, аj ? _ - пустой знак заменяется непустым (с номером j в алфавите), т.е. производится вставка знака;

4) аi ? аj ? _ - соответствует замене одного знака другим.

Таким образом, в машине Тьюринга реализуется система предельно простых команд обработки информации. Эта система команд обработки дополняется также предельно простой системой команд перемещений ленты: на ячейку влево, на ячейку вправо и остаться на месте, т.е. адрес обозреваемой ячейки в результате выполнения команды может либо измениться на 1, либо остаться неизменным.

Однако, хотя фактически происходит перемещение ленты, обычно рассматривается сдвиг головки относительно обозреваемой секции. По этой причине команда сдвига ленты влево обозначается R (Right), сдвига вправо - L (Left), отсутствие сдвига - S (Stop). Мы будем говорить именно о сдвиге головки и считать R, L и S командами ее движения.

Элементарность этих команд означает, что при необходимости обращения к содержимому некоторой ячейки, она отыскивается только посредством цепочки отдельных сдвигов на одну ячейку. Разумеется, это значительно удлиняет процесс обработки, зато позволяет обойтись без нумерации ячеек и использования команд перехода по адресу, т.е. сокращает количество истинно элементарных шагов, что важно в теоретическом отношении.

Обработка информации и выдача команд на запись знака, а также сдвига ленты в машине Тьюринга производится логическим устройством (ЛУ). ЛУ может находиться в одном из состояний, которые образуют конечное множество и обозначаются Q ={q1…qm, q0} , причем состояние q0 соответствует завершению работы, а q1 является начальным (исходным). Q совместно со знаками R, L, S образуют внутренний алфавит машины. ЛУ имеет два входных канала (ai, qi) и три выходных (ai+1, qi+1, Di+1). Схема ЛУ машины Тьюринга изображена на рисунке 2.


Рисунок 2 - Схема ЛУ машины Тьюринга

Понимать схему необходимо следующим образом: на такте i на один вход ЛУ подается знак из обозреваемой в данный момент ячейки (ai), а на другой вход - знак, обозначающий состояние ЛУ в данный момент (qi). В зависимости от полученного сочетания знаков (ai, qi) и имеющихся правил обработки ЛУ вырабатывает и по первому выходному каналу направляет в обозреваемую ячейку новый знак (ai+1), подает команду перемещения головки (Di+1 из R, L и S), а также дает команду на переход в следующее состояние (qi+1). Таким образом, элементарный шаг (такт) работы машины Тьюринга заключается в следующем: головка считывает символ из обозреваемой ячейки и, в зависимости от своего состояния и прочитанного символа, выполняет команду, в которой указано, какой символ записать (или стереть) и какое движение совершить. При этом и головка переходит в новое состояние. Схема функционирования такой машины представлена на рисунке 3.


Рисунок 3 - Схема функционирования машины Тьюринга

В данной схеме отражено разделение памяти на внешнюю и внутреннюю. Внешняя представлена, как указывалось, в виде бесконечной ленты - она предназначена для хранения информации, закодированной в символах внешнего алфавита. Внутренняя память представлена двумя ячейками для хранения следующей команды в течение текущего такта: в Q передается из ЛУ и сохраняется следующее состояние (qi+1), а в D - команда сдвига (Di+1). Из Q по линии обратной связи qi+1 поступает в ЛУ, а из D команда поступает на исполнительный механизм, осуществляющий при необходимости перемещение ленты на одну позицию вправо или влево.

Общее правило, по которому работает машина Тьюринга, можно представить следующей записью: qi aj > qi" aj" Dk, т.е. после обзора символа aj головкой в состоянии qi в ячейку записывается символ aj", головка переходит в состояние qi", а лента совершает движение Dk. Для каждой комбинации qi aj имеется ровно одно правило преобразования (правил нет только для q0, поскольку, попав в это состояние, машина останавливается). Это означает, что логический блок реализует функцию, сопоставляющую каждой паре входных сигналов qi aj одну и только одну тройку выходных qi"aj"Dk - она называется логической функцией машины и обычно представляется в виде таблицы (функциональной схемой машины), столбцы которой обозначаются символами состояний, а строки - знаками внешнего алфавита. Если знаков внешнего алфавита n, а число состояний ЛУ m, то, очевидно, общее число правил преобразования составит nЧm.

Конкретная машина Тьюринга задается перечислением элементов множеств A и Q, а также логической функцией, которую реализует ЛУ, т.е. набором правил преобразования. Ясно, что различных множеств A, Q и логических функций может быть бесконечно много, т.е. и машин Тьюринга также бесконечно много.

Необходимо также ввести понятие конфигурации машин, т.е. совокупности состояний всех ячеек ленты, состояния ЛУ и положение головки. Ясно, что конфигурация машины может содержать любое количество символов внешнего алфавита и лишь один символ внутреннего.

Перед началом работы на пустую ленту записывается исходное слово a конечной длины в алфавите A; головка устанавливается над первым символом слова a, ЛУ переводится в состояние q1 (т.е. начальная конфигурация имеет вид q1a). Поскольку в каждой конфигурации реализуется только одно правило преобразования, начальная конфигурация однозначно определяет всю последующую работу машины, т.е. всю последовательность конфигураций вплоть до прекращения работы.

В зависимости от начальной конфигурации возможны два варианта развития событий:

1) после конечного числа тактов машина останавливается по команде остановки; при этом на ленте оказывается конечная конфигурация, соответствующая выходной информации;

2) остановки не происходит.

В первом случае говорят, что данная машина применима к начальной информации, во втором - нет. Вся совокупность входных конфигураций, при которых машина обеспечивает получение результата, образуют класс решаемых задач. Очевидно, применять машину Тьюринга для задачи, не входящей в класс решаемых, бессмысленно.

Существует гипотеза Тьюринга: если некоторая процедура четко определена и по природе своей механистична, то можно вполне обоснованно предположить, что найдется машина Тьюринга, способная ее выполнить. Ее нельзя доказать, так как она связывает нестрогое определение понятия алгоритма со строгим определением машины Тьюринга. Эта гипотеза может быть опровергнута, если удастся привести пример алгоритма, который не может быть реализован с помощью тьюринговой функциональной схемы. Однако все известные до сих пор алгоритмы могут быть заданы посредством тьюринговых функциональных схем.