Солнечный ветер. Что из себя представляет Солнечный ветер? Кометы давление света солнечный ветер

В.Б.Баранов, Московский государственный университет им. М.В. Ломоносова

В статье рассматривается проблема сверхзвукового расширения солнечной короны (солнечный ветер). Анализируются четыре главные проблемы: 1) причины истечения плазмы из солнечной короны; 2) однородно ли такое истечение; 3) изменение параметров солнечного ветра с удалением от Солнца и 4) как солнечный ветер истекает в межзвездную среду.

Введение

Прошло почти 40 лет с тех пор, как американский физик Е. Паркер теоретически предсказал явление, которое получило название "солнечный ветер" и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах "Луна-2" и "Луна-3". Солнечный ветер представляет собой поток полностью ионизованной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (на одной астрономической единице (а.е.) от Солнца) скорость VE этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) ne = 10-20 частиц в кубическом сантиметре, а их температура Te равна примерно 100 000 К (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1

= 10- 5 Гс).

Немного истории, связанной с теоретическим предсказанием солнечного ветра

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления в ее атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это равновесие выражается в виде обыкновенного дифференциального уравнения

(1)

где G - гравитационная постоянная, M* - масса звезды, р - давление атмосферного газа,

- его массовая плотность. Если распределение температуры T в атмосфере задано, то из уравнения равновесия (1) и уравнения состояния для идеального газа
(2)

где R - газовая постоянная, легко получается так называемая барометрическая формула, которая в частном случае постоянной температуры Т будет иметь вид

(3)

В формуле (3) величина p0 представляет собой давление у основания атмосферы звезды (при r = r0). Из этой формулы видно, что при r

, то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от значения давления p0.

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось формулами, аналогичными формулам (1), (2), (3) . Учитывая необычное и до конца еще непонятое явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен (см., например, ) развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей пионерской работе Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы типа (3) для статической солнечной короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предположил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения равновесия (1) он предложил использовать гидродинамическое уравнение движения вида

(4)

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под

подразумевается масса Солнца.

При заданном распределении температуры Т система уравнений (2) и (4) имеет решения типа представленных на рис. 1. На этом рисунке через a обозначена скорость звука, а r* - расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис. 1 имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r*) к сверхзвуковому (при r > r*), и назвал такое течение солнечным ветром. Однако это утверждение оспаривалось в работе Чемберленом, который полагал наиболее реальным решение, соответствующее кривой 2, описывающей всюду дозвуковой "солнечный бриз". При этом первые эксперименты на космических аппаратах (см., например, ), обнаружившие сверхзвуковые потоки газа от Солнца, не казались, судя по литературе, Чемберлену достаточно достоверными.

Рис. 1. Возможные решения одномерных уравнений газовой динамики для скорости V течения газа от поверхности Солнца в присутствии силы гравитации. Кривая 1 соответствует решению для солнечного ветра. Здесь a - скорость звука, r - расстояние от Солнца, r* - расстояние, на котором скорость газа равна скорости звука, - радиус Солнца.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии .

Представления об однородном истечении плазмы из солнечной короны

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически-симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис. 1, то есть с переходом через скорость звука. Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис. 2.

Рис. 2. Схема течения в сопле Лаваля: 1 - бак, называемый ресивером, в который с малой скоростью подается очень горячий воздух, 2 - область геометрического поджатия канала с целью ускорения дозвукового потока газа, 3 - область геометрического расширения канала с целью ускорения сверхзвукового потока.

В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше его кинетической энергии направленного движения). Путем геометрического поджатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля - гравитационная сила солнечного притяжения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (иногда их называют плазменной турбулентностью), накладывающихся на среднее течение, а само течение уже не является адиабатическим. Количественный анализ таких процессов еще требует своего исследования.

Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции В оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть только в рамках науки, которая называется магнитной гидродинамикой. К каким результатам приводят такие рассмотрения? Согласно пионерской в этом направлении работе (см. также ), магнитное поле приводит к появлению электрических токов j в плазме солнечного ветра, что, в свою очередь, приводит к появлению пондеромоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен "звездный ветер". В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы открывает возможность пересмотра этой гипотезы.

Можно использовать не только как движитель космических парусников, но и как источник энергии. Наиболее известное применение солнечного ветра в этом качестве было впервые предложено Фрименом Дайсоном (Freeman Dyson), предположившим, что высокоразвитой цивилизации по силам создание сферы вокруг звезды, которая бы собирала всю испускаемую ею энергию. Исходя из этого так же был предложен очередной метод поиска внеземных цивилизаций.

Между тем, коллективом исследователей Вашингтонского университета (Washington State University) под руководством Брукса Харропа (Brooks Harrop) была предложена более практичная концепция использования энергии солнечного ветра - спутники Дайсона-Харропа. Они представляют собой довольно простые электростанции, собирающие электроны из солнечного ветра. На длинный металлический стержень, направленный на Солнце, подается напряжение для генерации магнитного поля, которое будет притягивать электроны. На другом конце располагается приемник-ловушка электронов, состоящая из паруса и приемника.

По расчетам Харропа, спутник с 300-метровым стержнем, толщиной 1 см и 10-метровой ловушкой, на орбите Земли сможет «собирать» до 1,7 МВт. Этого достаточно для обеспечения энергией примерно 1000 частных домов. Тот же спутник, но уже с километровым стержнем и парусом в 8400 километров сможет «собирать» уже 1 миллиард миллиардов гигаватт энергии (10 27 Вт). Остается только передать эту энергию на Землю, чтобы отказаться от всех остальных ее видов.

Команда Харропа предлагает передавать энергию с помощью лазерного луча. Однако, если конструкция самого спутника довольно проста и вполне реализуема на современном уровне технологий, то создание лазерного «кабеля» пока технически невозможно. Дело в том, что для эффективного сбора солнечного ветра спутник Дайсона-Харропа должен лежать вне плоскости эклиптики, а значит находится в миллионах километров от Земли. На таком расстоянии луч лазера будет давать пятно, диаметром в тысячи километров. Адекватная же фокусирующая система потребует объектив от 10 до 100 метров в диаметре. Кроме этого, нельзя исключать многие опасности от возможных сбоев системы. С другой стороны, энергия требуется и в самом космосе, и небольшие спутники Дайсона-Харропа вполне могут стать ее основным источником, заменив солнечные батареи и ядерные реакторы.

Солнечный ветер

Такое признание дорогого стоит, ибо возрождает к жизни полузабытую солнечно-плазмоидную гипотезу возникновения и развития жизни на Земле, выдвинутую ульяновским ученым Б. А. Соломиным почти 30 лет назад.

Солнечно-плазмоидная гипотеза утверждает, что высокоорганизованные солнечные и земные плазмоиды сыграли и до сих пор играют ключевую роль в зарождении и развитии жизни и разума на Земле. Эта гипотеза настолько интересна, особенно в свете получения экспериментальных материалов новосибирскими учеными, что с ней стоит познакомиться подробнее.

Прежде всего что такое плазмоид? Плазмоид – это плазменная система, структурированная собственным магнитным полем. В свою очередь, плазма – это горячий ионизированный газ. Простейшим примером плазмы является огонь. Плазма обладает способностью динамически взаимодействовать с магнитным полем, удерживать поле в себе. А поле, в свою очередь, упорядочивает хаотическое движение заряженных частичек плазмы. При определенных условиях образуется устойчивая, но динамичная система, состоящая из плазмы и магнитного поля.

Источником плазмоидов в Солнечной системе является Солнце. Вокруг Солнца, как и вокруг Земли, существует своя атмосфера. Внешняя часть солнечной атмосферы, состоящая из горячей ионизированной водородной плазмы, называется солнечной короной. И если на поверхности Солнца температура составляет примерно 10 000 К, то за счет потока энергии, идущего из его недр, температура короны достигает уже 1,5–2 млн К. Поскольку плотность короны мала, такой нагрев не уравновешивается потерей энергии за счет излучения.

В 1957 году профессор Чикагского университета Е. Паркер опубликовал свое предположение о том, что солнечная корона не находится в гидростатическом равновесии, а непрерывно расширяется. В этом случае значительная часть излучения Солнца представляет собой более или менее непрерывное истечение плазмы, так называемый солнечный ветер , который и уносит избыточную энергию. То есть солнечный ветер является продолжением солнечной короны.

Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3». Позднее выяснилось, что солнечный ветер уносит с поверхности нашего светила помимо энергии и информации еще примерно миллион тонн вещества в секунду. Оно содержит главным образом протоны, электроны, немного ядер гелия, ионов кислорода, кремния, серы, никеля, хрома и железа.

В 2001 году американцы вывели на орбиту космический аппарат «Джинизис», созданный для изучения солнечного ветра. Пролетев более полутора миллиона километров, аппарат приблизился к так называемой точке Лагранжа, где гравитационное воздействие Земли уравновешивается гравитационными силами Солнца, и развернул там свои ловушки частиц солнечного ветра. В 2004 году капсула с собранными частицами рухнула на землю вопреки запланированной мягкой посадке. Частицы удалось «отмыть» и сфотографировать.

К настоящему времени наблюдения, выполненные со спутников Земли и других космических аппаратов, показывают, что межпланетное пространство заполнено активной средой – потоком солнечного ветра, который зарождается в верхних слоях солнечной атмосферы.

Когда на Солнце происходят вспышки, от него через солнечные пятна (корональные дыры) – области в атмосфере Солнца с открытым в межпланетное пространство магнитным полем во все стороны разлетаются потоки плазмы и магнитно-плазменные образования – плазмоиды. Этот поток движется от Солнца со значительным ускорением, и если у основания короны радиальная скорость частиц составляет несколько сотен м/с, то вблизи Земли она достигает 400–500 км/с.

Достигая Земли, солнечный ветер вызывает изменения в ее ионосфере, магнитные бури, что существенным образом сказывается на биологических, геологических, психических и даже исторических процессах. Об этом еще в начале XX века писал великий русский ученый А. Л. Чижевский, который с 1918 года в Калуге в течение трех лет проводил эксперименты в области аэроионизации и пришел к выводу: отрицательно заряженные ионы плазмы благотворно влияют на живые организмы, а положительно заряженные действуют противоположно. В те далекие времена до открытия и начала изучения солнечного ветра и магнитосферы Земли оставалось 40 лет!

Плазмоиды присутствуют в биосфере Земли, в том числе и в плотных слоях атмосферы и вблизи ее поверхности. В своей книге «Биосфера» В. И. Вернадский впервые описал механизм поверхностной оболочки, тонко согласованный во всех своих проявлениях. Без биосферы не было бы земного шара, ибо, по мнению Вернадского, Земля «лепится» Космосом при помощи биосферы. «Лепится» благодаря использованию информации, энергии и вещества. «По существу, биосфера может быть рассматриваема как область земной коры, занятая трансформаторами (курсив наш. – Авт .), переводящими космические излучения в действенную земную энергию – электрическую, химическую, тепловую, механическую и т. д.» (9). Именно биосфера, или «геологообразующая сила планеты», как назвал ее Вернадский, начала изменять структуру круговорота вещества в природе и «создавать новые формы и организации косной и живой материи». Вполне вероятно, что, говоря о трансформаторах, Вернадский говорил о плазмоидах, о которых в то время вообще ничего не знали.

Солнечно-плазмоидная гипотеза позволяет объяснить роль плазмоидов в зарождении жизни и разума на Земле. На ранних этапах эволюции плазмоиды могли стать своего рода активными «центрами кристаллизации» для более плотных и холодных молекулярных структур ранней Земли. «Одеваясь» в относительно холодные и плотные молекулярные одежды, становясь своеобразными внутренними «энергетическими коконами» возникающих биохимических систем, они одновременно являлись управляющими центрами сложной системы, направляя эволюционные процессы в сторону образования живых организмов (10). К подобному выводу пришли также ученые МНИИКА, которые сумели в экспериментальных условиях добиться материализации неравномерных эфирных потоков.

Аура, которую чувствительные физические приборы фиксируют вокруг биологических объектов, представляет собой, по-видимому, внешнюю часть плазмоидного «энергетического кокона» живого существа. Можно предположить, что энергетические каналы и биологически активные точки восточной медицины – это внутренние структуры «энергетического кокона».

Источником плазмоидной жизни для Земли является Солнце, и потоки солнечного ветра несут нам это жизненное начало.

А что является источником плазмоидной жизни для Солнца? Чтобы ответить на этот вопрос, необходимо предположить, что жизнь на любом уровне не возникает «сама по себе», а привносится из более глобальной, высокоорганизованной, разреженной и энергетичной системы. Как для Земли Солнце является «материнской системой», так и для светила должна существовать подобная «материнская система» (11).

По мнению ульяновского ученого Б. А. Соломина, «материнской системой» для Солнца могли служить межзвездная плазма, горячие водородные облака, туманности, содержащие магнитные поля, а также релятивистские (то есть двигающиеся со скоростью, близкой к скорости света) электроны. Большое количество разреженной и очень горячей (миллионы градусов) плазмы и релятивистских электронов, структурированных магнитными полями, заполняют галактическую корону – сферу, в которую заключен плоский звездный диск нашей Галактики. Глобальные галактические плазмоидные и релятивистско-электронные облака, уровень организации которых несоизмерим с солнечным, порождают плазмоидную жизнь на Солнце и других звездах. Таким образом, носителем плазмоидной жизни для Солнца служит галактические ветер.

А что является «материнской системой» для галактик? В образовании глобальной структуры Вселенной большую роль ученые уделяют сверхлегким элементарным частицам – нейтрино, буквально пронизывающим пространство во всех направлениях со скоростями, близкими к скорости света. Именно нейтринные неоднородности, сгустки, облака могли послужить теми «каркасами», или «центрами кристаллизации», вокруг которых в ранней Вселенной образовались галактики и их скопления. Нейтринные облака – это еще более тонкий и энергетичный уровень материи, чем описанные выше звездные и галактические «материнские системы» космической жизни. Они вполне могли быть конструкторами эволюции для последних.

Поднимемся, наконец, на самый высокий уровень рассмотрения – на уровень нашей Вселенной в целом, возникшей около 20 миллиардов лет назад. Изучая ее глобальную структуру, ученые установили, что галактики и их скопления располагаются в пространстве не хаотично и не равномерно, а вполне определенным образом. Они концентрируются вдоль стенок огромных пространственных «сот», внутри которых содержатся, как считалось до недавнего прошлого, гигантские «пустоты» – войды. Однако сегодня уже известно, что «пустот» во Вселенной не существует. Можно предположить, что все заполняет «специальная субстанция», носителем которой являются первичные торсионные поля. Эта «специальная субстанция», представляющая основу всех жизненных функций, вполне может являться для нашей Вселенной тем Мировым Архитектором, Космическим сознанием, Высшим разумом, который придает смысл ее существованию и направление эволюции.

Если это так, то уже в момент своего рождения наша Вселенная была живой и разумной. Жизнь и разум не возникают самостоятельно в каких-либо холодных молекулярных океанах на планетах, они изначально присущи космосу. Космос насыщен различными формами жизни, порой разительно отличающимися от привычных нам белково-нуклеиновых систем и несопоставимыми с ними по своей сложности и степени разумности, пространственно-временным масштабам, по энергии и массе.

Именно разреженная и горячая материя направляет эволюцию материи более плотной и холодной. Таков, по-видимому, фундаментальный закон природы. Космическая жизнь иерархически нисходит от таинственной материи войдов к нейтринным облакам, межгалактической среде, а от них – к ядрам галактик и галактическим коронам в виде релятивистско-электронных и плазменно-магнитных структур, затем – в межзвездное пространство, к звездам и, наконец, к планетам. Космическая разумная жизнь творит по своему образу и подобию все локальные формы жизни и управляет их эволюцией (10).

Наряду с общеизвестными условиями (температура, давление, химический состав и др.) для возникновения жизни требуется наличие у планеты выраженного магнитного поля, не только защищающего живые молекулы от смертоносной радиации, но и создающего вокруг нее концентрацию солнечно-галактической плазмоидной жизни в виде радиационных поясов. Из всех планет Солнечной системы (кроме Земли) только у Юпитера имеются сильное магнитное поле и большие радиационные пояса. Поэтому есть некоторая определенность наличия на Юпитере молекулярной разумной жизни, хотя, возможно, и небелковой природы.

С высокой степенью вероятности можно предположить, что все процессы на молодой Земле протекали не хаотично и не самостоятельно, а направлялись высокоорганизованными плазмоидными конструкторами эволюции. В существующей сегодня гипотезе возникновения жизни на Земле также признается необходимость наличия неких плазменных факторов, а именно мощных грозовых разрядов в атмосфере ранней Земли.

Не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала в тесном взаимодействии с плазмоидной жизнью при направляющей роли последней. Взаимодействие это становилось с течением времени все более тонким, поднималось на уровень психики, души, а затем и духа усложняющихся живых организмов. Дух и душа живых и разумных существ – это очень тонкая плазменная материя солнечного и земного происхождения.

Установлено, что плазмоиды, обитающие в радиационных поясах Земли (преимущественно солнечного и галактического происхождения), могут спускаться вдоль линий земного магнитного поля в низшие слои атмосферы, особенно в тех точках, где эти линии наиболее интенсивно пересекают поверхность Земли, а именно в районах магнитных полюсов (северного и южного).

Вообще, плазмоиды чрезвычайно широко распространены на Земле. Они могут обладать высокой степенью организации, проявлять некоторые признаки жизни и разумности. Советские и американские экспедиции в район южного магнитного полюса в середине XX века сталкивались с необычными светящимися объектами, плавающими в воздухе и ведущими себя очень агрессивно по отношению к членам экспедиции. Они были названы плазмозаврами Антарктиды.

С начала 1990-х годов регистрация плазмоидов не только на Земле, но и в ближайшем космосе возросла в разы. Это шары, полосы, круги, цилиндры, мало оформившиеся светящиеся пятна, шаровые молнии и т. д. Ученые сумели разделить все объекты на две большие группы. Это прежде всего объекты, которые имеют отчетливые признаки известных физических процессов, но в них эти признаки представлены в совершенно необычном сочетании. Другая группа объектов, наоборот, не имеет аналогий с известными физическими явлениями, и поэтому их свойства вообще необъяснимы на основе существующей физики.

Стоит отметить существование плазмоидов земного происхождения, рождающихся в зонах разломов, где идут активные геологические процессы. Интересен в этом отношении Новосибирск, стоящий на активных разломах и имеющий в связи с эти особую электромагнитную структуру над городом. Все свечения и вспышки, регистрируемые над городом, тяготеют к этим разломам и объясняются вертикальным энергетическим неравновесием и активностью пространства.

Наибольшее количество светящихся объектов наблюдается в центральном районе города, расположенном на участке, где совпадают сгущения технических энергоисточников и разломов гранитного массива.

Например, в марте 1993 года у общежития Новосибирского государственного педагогического университета наблюдался дискообразный объект порядка 18 метров в диаметре и 4,5 метра толщиной. Гурьба школьников гонялась за этим объектом, медленно дрейфовавшим над землей на протяжении 2,5 километра. Школьники пытались кидать в него камни, но те отклонялись, не долетая до объекта. Тогда дети стали подбегать под объект и развлекаться тем, что с них сбрасывались шапки, поскольку волосы становились дыбом от электрического напряжения. Наконец этот объект вылетел на линию высоковольтной передачи, никуда не отклоняясь, пролетел вдоль нее, набрал скорость, светимость, превратился в яркий шар и ушел вверх (12).

Следует особо отметить появление светящихся объектов в экспериментах, проводимых новосибирскими учеными в зеркалах Козырева. Благодаря созданию лево-правовращающихся торсионных потоков за счет вращающихся световых течений в обмотках лазерной нити и конусах ученые сумели в зеркале Козырева смоделировать информационное пространство планеты с появившимися в нем плазмоидами. Удалось исследовать влияние появившихся светящихся объектов на клетки, а затем и на самого человека, в результате чего укрепилась уверенность в правоте солнечно-плазмоидной гипотезы. Появилось убеждение, что не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала и протекает в тесном взаимодействии с плазмоидной жизнью при направляющей роли высокоорганизованных плазмоидов.

Данный текст является ознакомительным фрагментом.

Существует постоянный поток частиц, выбрасываемых из верхних слоев атмосферы Солнца. Мы видим свидетельство солнечного ветра вокруг нас. Мощные геомагнитные бури могут повреждать спутники и электрические системы на Земле, и вызывать красивые полярные сияния. Возможно, лучшее его доказательство, это длинные хвосты комет, когда они проходят вблизи Солнца.

Частицы пыли кометы отклоняются ветром и уносятся от Солнца, вот почему хвосты комет всегда направлены от нашего светила.

Солнечный ветер: происхождение, характеристики

Он исходит из верхних слоев атмосферы Солнца, называемой короной. В этом регионе температура более 1 миллиона Кельвинов, и частицы имеют заряд энергии более чем 1 кэВ. Есть фактически два вида солнечного ветра: медленный и быстрый. Это различие можно увидеть в кометах. Если вы посмотрите на изображение кометы внимательно, то увидите, что они часто имеют два хвоста. Один из них прямой, а другой более изогнутый.

Скорость Солнечного ветра онлайн вблизи Земли, данные за последние 3 дня

Быстрый Солнечный ветер

Он движется со скоростью 750 км/с, и астрономы полагают, что он происходят из корональных дыр — регионов, где силовые линии магнитного поля пробиваются к поверхности Солнца.

Медленный солнечный ветер

Он имеет скорость порядка 400 км/с, и приходит из экваториального пояса нашей звезды. Излучение доходит до Земли, в зависимости от скорости, от нескольких часов, до 2-3 дней.

Медленный солнечный ветер шире и плотнее, чем быстрый, который создает большой, яркий хвост кометы.

Если бы не магнитное поле Земли, то он уничтожил бы жизнь на нашей планете. Однако, магнитное поле вокруг планеты, защищает нас от радиации. Форма и размер магнитного поля определяется силой и скоростью ветра.

Может достигать значений до 1,1 миллиона градусов по Цельсию. Поэтому, имея такую температуру, частицы двигаются очень быстро. Гравитация Солнца не может удержать их — и они покидают звезду.

Активность Солнца меняется в течение 11-летнего цикла. При этом количество солнечных пятен, уровни радиации и масса выброшенного в космос материала меняются. И эти изменения влияют на свойства солнечного ветра — его магнитное поле, скорость, температуру и плотность. Поэтому солнечный ветер может иметь разные характеристики. Они зависят от того, где конкретно находился его источник на Солнце. И еще они зависят от того, насколько быстро вращалась эта область.

Скорость солнечного ветра выше скорости движения вещества корональных отверстий. И достигает 800 километров в секунду. Эти отверстия возникают на полюсах Солнца и в его низких широтах. Они приобретают наибольшие размеры в те периоды, когда активность на Солнце минимальна. Температуры вещества, переносимого солнечным ветром, могут достигать 800 000 C.

В поясе коронального стримера, расположенного вокруг экватора, солнечный ветер движется медленнее — около 300 км. в секунду. Установлено, что температура вещества, перемещающегося в медленном солнечном ветре достигает 1,6 млн. C.

Солнце и его атмосфера состоят из плазмы и смеси положительно и отрицательно заряженных частиц. Они имеют чрезвычайно высокие температуры. Поэтому материя постоянно покидает Солнце, уносимая солнечным ветром.

Воздействие на Землю

Когда солнечный ветер покидает Солнце, он несет заряженные частицы и магнитные поля. Излучаемые во всех направлениях частицы солнечного ветра постоянно воздействует на нашу планету. Этот процесс вызывает интересные эффекты.

Если материал, переносимый солнечным ветром, достигнет поверхности планеты, он нанесет серьезный ущерб любой форме жизни, которая существует на . Поэтому магнитное поле Земли служит щитом, перенаправляя траектории солнечных частиц вокруг планеты. Заряженные частицы как бы «стекают» за ее пределами. Воздействие солнечного ветра изменяет магнитное поле Земли таким образом, что оно деформируется и растягивается на ночной стороне нашей планеты.

Иногда Солнце выбрасывает большие объемы плазмы, известные как выбросы корональной массы (CME), или солнечные бури. Чаще всего это происходит в период активного периода солнечного цикла, известного как солнечный максимум. CME имеют более сильный эффект, чем стандартный солнечный ветер.

Некоторые тела Солнечной системы, как и Земля, экранированы магнитным полем. Но многие из них такой защиты не имеют. Спутник нашей Земли — не имеет никакой защиты для своей поверхности. Поэтому испытывает максимальное воздействие солнечного ветра. У Меркурия, ближайшей к Солнцу планеты, есть магнитное поле. Оно защищает планету от обычного стандартного ветра, однако оно не способно противостоять более мощным вспышкам, таким как CME.

Когда высоко — и низкоскоростные потоки солнечного ветра взаимодействуют друг с другом, они создают плотные области, известные как области с вращающимся взаимодействием (CIR). Именно эти области вызывают геомагнитные бури при столкновении с земной атмосферой.

Солнечный ветер и заряженные частицы, которые он несет, могут влиять на спутники Земли и Глобальные системы позиционирования (GPS). Мощные всплески могут повредить спутники или вызвать ошибки определений координат при использовании сигналов GPS в десятки метров.

Солнечный ветер достигает всех планет в . Миссия NASA New Horizons обнаружила его, когда путешествовала между и .

Изучение солнечного ветра

Ученым известно о существовании солнечного ветра с 1950-х годов. Но несмотря на его серьезное воздействие на Землю и космонавтов, ученые все еще не знают многих его характеристик. Несколько космических миссий, совершенных в последние десятилетия, пытались объяснить эту тайну.

Запущенная в космос 6 октября 1990 года миссия NASA Ulysses изучала Солнце на разных его широтах. Она измеряла различные свойства солнечного ветра в течение более чем десяти лет.

Миссия Advanced Composition Explorer () имела орбиту, связанную с одной из особых точек, находящихся между Землей и Солнцем. Она известна как точка Лагранжа. В этой области гравитационные силы от Солнца и Земли имеют одинаковое значение. И это позволяет спутнику иметь стабильную орбиту. Начатый в 1997 году эксперимент ACE изучает солнечный ветер и обеспечивает измерения постоянного потока частиц в реальном масштабе времени.

Космические аппараты NASA STEREO-A и STEREO-B изучают края Солнца с разных сторон, чтобы увидеть, как рождается солнечный ветер. По данным NASA , STEREO представила «уникальный и революционный взгляд на систему Земля — Солнце».

Новые миссии

NASA планирует запуск новой миссии по изучению Солнца. Она дает ученым надежду узнать еще больше о природе Солнца и солнечного ветра. Солнечный зонд NASA Parker , планируемый к запуску (успешно запущен 12.08.2018 — Navigator ) летом 2018 года, будет работать таким образом, чтобы буквально «коснуться Солнца». Спустя несколько лет полета на орбите, близкой к нашей звезде, зонд впервые в истории погрузится в корону Солнца. Это будет сделано для того, чтобы получить комбинацию фантастических изображений и измерений. Эксперимент продвинет вперед наше понимание природы солнечной короны, и улучшит понимание происхождения и эволюции солнечного ветра.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .