Метионин является донором группы. Метионин - незаменимая аминокислота

Метионин – это альфа-аминокислота, которая используется в биосинтезе белков. Он содержит альфа-аминогруппу (которая находится в протонированной - + форме NH3 в биологических условиях), группу альфа-карбоновой кислоты (которая находится в депротонированной -COO- форме в биологических условиях) и S-метил тиоэфирную боковую цепь, что классифицирует его как неполярную алифатическую аминокислоту. Он важен для организма человека, но не производится в нем, таким образом, его нужно получать из рациона.


Протеиногенная аминокислота

Наряду с цистеином, метионин – это одна из двух протеиногенных аминокислот с содержанием серы. Помимо немногих исключений, где он может выступать в качестве окислительно-восстановительного датчика, его остатки не имеют каталитической роли. В отличие от этого, в остатках цистеина группа тиола играет каталитическую роль во многих белках. Однако тиоэфир имеет низкое структурное значение из-за эффекта устойчивости взаимодействия S/π между атомом серы боковой цепи и ароматическими аминокислотами в трети известных белковых структур. Такое отсутствие значимой роли отражается в экспериментах, где небольшой эффект виден в белках, где метионин заменяется норлейцином, прямой аминокислотой углеводородной боковой цепи, в которой не хватает тиоэфира. Было высказано предположение, что в ранних версиях генетического кода присутствовал норлейцин, но в окончательный вариант генетического кода вторгся метионин из-за того, что он используется в кофакторе S-аденозил метионина (SAM). Эта ситуация не уникальна и может иметь место с орнитином и аргинином.

Кодирование

Метионин является одной из всего лишь двух аминокислот, которые в стандартном генетическом коде кодируются одним кодоном (AUG). Другая аминокислота – это триптофан , кодируемый UGG. Говоря об эволюционном происхождении его кодона, другие кодоны AUN кодируют изолейцин (также гидрофобная аминокислота). В геноме митохондрий нескольких организмов, включая многоклеточные и дрожжи, метионин также кодируется кодоном AUA. AUA в стандартном генетическом коде кодирует изолейцин, и соответствующая тРНК (ileX в Escherichia coli ) использует необычный базовый лизидин (бактерии) или агматиндеиминазу (археи), чтобы ставить в худшие условия AUG.

Кодон метионина AUG – это также наиболее распространенный стартовый кодон. Он представляет собой сообщение для рибосомы, которое сигнализирует о запуске трансляции белка из мРНК в момент пребывания кодона AUG в консенсусной последовательности Козака. В результате у эукариот и архей метионин часто включается в N-концевое положение белков в процессе трансляции, хотя он может быть удален путем посттрансляционной модификации. У бактерий в качестве начальной аминокислоты используется производный N-формилметионин.

Видео о метионине

Производные метионина

S-аденозил-метионин

Метионин-производное S-аденозил метионин (SAM) является кофактором, который в основном служит в качестве донора метила. SAM состоит из молекулы аденозила (через углерод 5"), прикрепленной к сере метионина, следовательно, делая его сульфониевым катионом (три заместителя и положительный заряд). Сера действует как мягкая Льюисова кислота (донор /электрофил) и позволяет S-метильной группе перемещаться к азоту, кислороду или ароматической системе, и часто с помощью других кофакторов, таких как кобаламин (в организме человека витамин В 12). Некоторыми ферментами SAM используется, чтобы инициировать радикальную реакцию, они называются радикальными ферментами SAM. В результате переноса метильной группы получается S-аденозил-гомоцистеин. У бактерий он регенерируется путем метилирования или извлекается путем удаления аденина, а гомоцистеин оставляет соединение дигидроксипентандион спонтанно конвертироваться в аутоиндуктор-2, который выделяется в качестве отходного продукта/кворумного сигнала.

Биосинтез

В качестве незаменимой аминокислоты, метионин не синтезируется заново в организме человека и других животных, которым нужно поглощать его или метионин-содержащие белки . В растениях и микроорганизмах его биосинтез принадлежит к семейству аспартата, как и треонин, и лизин (через диаминопимелат, но не через альфа-аминоадипат). Основной скелет получен из аспарагиновой кислоты, а сера может исходить из цистеина, метантиола или сероводорода.

  • Во-первых, аспарагиновая кислота превращается через бета-аспартил-полуальдегид в гомосерин посредством двух этапов восстановления концевой карбоксильной группой (поэтому гомосерин имеет гамма-гидроксил, следовательно, гомо- ряд). Промежуточный аспартат-полуальдегид является точкой ветвления с путем биосинтеза лизина, где он вместо этого конденсируется пируватом. Гомосерин является точкой ветвления с путем треонина, где вместо этого он изомеризуется после активации концевого гидроксила фосфатом (также используется для биосинтеза метионина в растениях).
  • Гомосерин затем активируется с фосфатом, сукцинилом или группой ацетила на гидроксиле.
    • В растениях и, возможно, в некоторых бактериях используется фосфат . Этот этап является общим с биосинтезом треонина.
    • У большинства организмов ацетильная группа используется для активации гомосерина. Он может катализироваться в бактериях под действием фермента, кодируемого metX или metA (не гомологи).
    • У энтеробактерий и ограниченного количества других организмов используется сукцинат. Фермент , которым катализируется реакция , это MetA , и специфичность для ацетил-СоА и сукцинил-СоА диктуется одним остатком. проживают. Физиологическая основа для предпочтения ацетил-СоА или сукцинил-СоА неизвестна, но эти альтернативные маршруты имеются и в некоторых других путях (как в биосинтезе лизина и аргинина).
  • Группа активации гидроксила затем заменяется цистеином, метантиолом или сероводородом. Реакция замещения технически является гамма-элиминированием с последующим вариантом присоединения Михаэля. Все участвующие ферменты – это гомологи и члены семейства PLP-зависимых ферментов метаболизма Cys/Met , которое является подмножеством клада типа I PLP-зависимого изгиба. Они используют кофактор PLP (пиридоксаль фосфат), который функционирует за счет стабилизации промежуточных продуктов карбаниона.
    • Если он реагирует с цистеином, он производит цистатионин, который расщепляется с образованием гомоцистеина. Участвующие ферменты – это цистатионин-гамма-синтаза (кодируется metB в бактериях) и цистатионина-бета-лиаза (metC ). Цистатионин связан по-разному в двух ферментах, позволяя происходить бета или гамма реакции.
    • Если он реагирует со свободным сероводородом, он дает гомоцистеин. Он катализируется O-ацетилгомосерин аминокарбоксипропилтрансферазой (ранее известным как О-ацетилгомосерин(тиол)-лиазой. Он кодируется metY или metZ в бактериях.
    • Если он реагирует с метантиолом, он производит непосредственно метионин. Метантиол является побочным продуктом катаболического пути некоторых соединений, поэтому этот путь является более необычным.
  • Если производится гомоцистеин, группа тиола метилируется, получая метионин. Известны две метионин синтазы, одна зависимая от кобаламина (витамин В 12) и одна независимая.

Путь с использованием цистеина называется путем транссульфурации, в то время как путь с использованием сероводорода (или метантиола) называется путем транс -сульфуризации.

Высокие уровни метионина можно обнаружить в яйцах, кунжуте, бразильских орехах, мясе, рыбе, некоторых семенах растений и в зерновых. Большинство фруктов, овощей и бобовых содержат его очень мало. Тем не менее, именно сочетание метионина и цистина считается полноценным белком. Рацемическая аминокислота иногда добавляется в качестве ингредиента в корм для домашних животных.

Ограничение потребления

Существует научное доказательство, что ограничение его потребления у некоторых животных может повысить продолжительность жизни .

В исследовании 2005 г. было обнаружено, что ограничение метионина без ограничения энергии увеличивает продолжительность жизни мышей.

По результатам исследования, опубликованного в Nature, добавление этой незаменимой аминокислоты в рацион дрозофил при диетическом ограничении, включая ограничение незаменимых аминокислот, восстановило фертильность без снижения продолжительности жизни, характерного для диетического ограничения. Это привело исследователей к выводу, что это вещество в комбинации с одним или другими возбуждающими аминокислотами приводит к уменьшению продолжительности жизни.

В нескольких исследованиях было выявлено, что ограничение метионина также ингибирует связанные со старением болезненные процессы у мышей и ингибирует канцерогенез толстой кишки у крыс. У человека ограничение через диетические изменения может быть достигнуто посредством вегетарианской диеты . Веганизм, основанный полностью на растительных продуктах, как правило, отличается очень низким содержанием метионина, однако некоторые орехи и бобовые могут обеспечить более высокий уровень.

Исследование 2009 г. на крысах показало, что добавки с этим веществом увеличивают производство митохондриальной ROS, а окислительное повреждение митохондриальной ДНК предполагают вероятный механизм его гепатотоксичности.

Однако, поскольку метионин – это незаменимая аминокислота, полностью удалить его из диеты животных без заболевания или смерти, наступающей со временем, нельзя. Например, у крыс, получавших диету без метионина, развилась жировая дистрофия печени, анемия и потеря двух третей веса в течение 5 недель. Введение метионина улучшает патологические последствия его дефицита.

Метионин может также иметь большое значение для реверсирования повреждения от метилирования глюкокортикоидных рецепторов, вызванного повторным воздействием стресса, с последствиями для депрессии.

Метионин и здоровье

Отсутствие метионина связано со старческим поседением волос . При его нехватке перекись водорода накапливается в волосяных фолликулах, что приводит к снижению эффективности тирозиназы и постепенной потере цвета волос.

Метионин является промежуточным продуктом в биосинтезе цистеина, таурина, карнитина, фосфатидилхолина, лецитина и других фосфолипидов. При неправильном преобразовании метионина может развиться атеросклероз .

Другие виды применения

Иногда DL-метионин дают собакам в качестве добавки. Он помогает снизить вероятность образования камней у собак посредством хелатирования тяжелых металлов, таких как , свинец и кадмий, а также выводит их из организма. Метионин также известен тем, что повышает экскрецию хинидина путем подкисления мочи. Аминогликозиды, используемые для лечения инфекций мочевыводящих путей, лучше всего работают в щелочных условиях, и подкисление мочи с использованием метионина может уменьшить их эффективность. Если ваша собака на диете, которая повышает кислотность мочи, метионин использовать нельзя.

Метионин допускается в качестве добавки в органические корма для домашней птицы в соответствии с сертифицированной органической программой

Экология потребления.Обсуждение любых вопросов здоровья должно быть с осознанием нелинейности биологических процессов, с пониманием того, что один и тот же принцип или вещество может вести себя по разному в зависимости от режима использования

Обсуждение любых вопросов здоровья должно быть с осознанием нелинейности биологических процессов, с пониманием того, что один и тот же принцип или вещество может вести себя по разному в зависимости от режима использования, индивидуальных особенностей и множества других аспектов. Поэтому часто обсуждение “пользы” самой по себе вовсе лишено смысла. В этой заметке я расскажу про метиониновый парадокс.

Почему парадокс?

Традиционно метионин относят к антиоксидантам и факторам, предотвращающим старение. Но в то же время ограничение его содержания в пище приводит к увеличению продолжительности жизни. Как это происходит? Давайте разберемся. Единого мнения по этому вопросу пока нет, но необходимо учитывать, что, во-первых, антиоксиданты в избытке являются прооксидантами, во-вторых, метионин - затравочная аминокислота в биосинтезе любого белка, а снижение валового синтеза белка экономит энергию на процессы репарации и стрессоустойчивости.

С одной стороны, метионин это - незаменимая алифатическая серосодержащая аминокислота, которая жизненно необходима для здоровья человека. Метионин не синтезируется в организме человека и поэтому единственный естественный путь пополнения запасов этой аминокислоты является диета, содержащая продукты питания богатые метионином . Также метионин является источником серы при биосинтезе цистеина. Метионин также служит в организме донором метильных групп (в составе S-аденозил-метионина) при биосинтезе холина, адреналина. Достаточное количество метионина является одним из важнейших факторов для начала синтеза новых белков в организме. Если метионина недостаточно, то скорость синтеза белков падает.

С другой стороны, оказалось, что аминокислота метионин, а также аминокислоты БЦАА (лейцин, изолейцин и валин) стимулируют активность сигнального белка - киназы TOR. Активность белка киназы TOR сокращает продолжительность жизни из-за того, что этот белок активизирует процессы синтеза новых белков в оргазме в ущерб «утилизации» старых, которые просто засоряют клетку. Повышенное содержание старых повреждённых белков приводит к ускоренному старению клеток организма. Получается, что снижение в рационе питания метионина существенно продлевают жизнь человека. Как оказалось высокий уровень метионина в питании сокращает продолжительность жизни, провоцирует ожирение (прямой фактор инсульта и инфаркта), повышает чувствительность рецепторов клеток организма к инсулину (провоцирует сахарный диабет и атеросклероз), повышаю уровень сахара в крови. Диеты с низким содержанием метионина показывают удивительные результаты. Они уменьшают риск развития ряда заболеваний и удлиняют продолжительность жизни. Давайте разберемся с этим парадоксом!

Продление жизни и низкометиониновая диета.

Ученые из мексиканского онкологического центра Oasis of Hope Hospital недавно опубликовали обзор, в котором предлагают использовать ограничение потребления метионина (ОПМ) в качестве стратегии для продления жизни.

Недавние исследования показали, что ограничение потребления метионина с пищей увеличивало среднюю и максимальную продолжительность жизни у крыс и мышей. При этом эффекты анти-старения были схожи с таковыми при ограничении калорийности питания, включая подавление продукции активных форм кислорода (АФК) в митохондриях.

Обнаружено, что ограничение потребления метионина приводит к снижению в плазме крови уровней инсулина, ИФР1, глюкозы и тиреоидных гормонов. Кроме того, у мышей, получавших ограниченный рацион, снижались возрастные изменения, такие как помутнение хрусталика, изменения субпопуляций Т-лимфоцитов и оксидативный стресс в печени. И эффекты ограничения потребления метионина не связаны с ограничением потребления калорий. Часть эффектов ОПМ связана со снижением синтеза ИФР1 в печени. Но у грызунов снижение потребления любой незаменимой аминокислоты вызывает подобный эффект.

Метионин, как мы уже говорили, является донором метильных групп, а также является предшественником таурина, полиаминов, глутатиона и сульфатов. Часть этих функций может восполнить цистеин, поэтому диеты с ОПМ не содержат цистеин и большинство других заменимых аминокислот. Механизм увеличения продолжительности жизни при ограничении потребления других аминокислот пока не ясен. Другим эффектом ОПМ является снижение синтеза АФК в дыхательной цепи митохондрий, что приводит к снижению оксидативного повреждения митохондриальной ДНК и белков.

Переизбыток метионина в организме.

Чем еще опасен переизбыток метионина в организме? Как мы уже говорили, метионин является донором метильных групп в организме, эта функция осуществляется им в форме S-аденозил-метионина (SAM, гептрал). Избыточное метилирование может быть фактором, приводящим к развитию болезни Паркинсона (БП)- тяжелого возраст-ассоциированного заболевания. Инъекции SAM в мозг крысы приводили к изменениям, схожими с БП. Гидролиз сложноэфирной связи между метильной группой и метилированным белком приводит к образованию метанола. Метанол окисляется до формальдегида, который в свою очередь окисляется до муравьиной кислоты.

В Департаменте Неврологии Meharry Medical College ученые занимаются исследованием роли SAM в продукции этих токсичных веществ в мозге крыс и их токсичность для клеточной линии PC12, которая используется как модель дифференцировки нервной ткани. Они определили, что SAM усиливает образование метанола, формальдегида и муравьиной кислоты в зависимости от концентрации и времени действия. Кроме того, формальдегид наиболее токсичен для клеток PC12 в исследованиях на культуре клеток, из этого можно сделать вывод, что формальдегид, который образуется в организме, может приводить к повреждению нейронов в условиях избыточного метилирования.

Субтоксические концентрации формальдегида снижают экспрессию тирозингидроксилазы, лимитирующего фактора синтеза допамина. Формальдегид более токсичен для катехоламинергических клеток PC12, чем для клеток глиомы C6, что свидетельствует о том, что нейроны более чувствительны к воздействию формальдегида, чем глия. На основании полученных результатов был сделан вывод: избыточное метилирование белков вовлечено в возникновение SAM-индуцированных БП-подобных изменений и процесс старения, этот процесс связан с токсическим действием формальдегида.

Метионин и опухолевые заболевания.

Как известно, в раковых клетках идет интенсивный синтез белка. Поэтому низкометиониновая диета обладает способностью замедлять рост опухолей и делать их более чувствительными к терапии. Безметиониновая диета улучшала ответ тройного негативного рака молочной железы в эксперименте на мышах. Сотрудники Университета Висконсина (University of Wisconsin) опубликовали в журнале Clinical Cancer Research результаты своей работы, в которой доказано, что лишение опухолевых клеток некоторых питательных веществ, возможное при помощи диеты, повышает чувствительность новообразования к таргетным препаратам.

Существуют клинические данные о том, что диета с низким содержанием метионина улучшает течение некоторых онкологических заболеваний. Механизмы этого явления неизвестны. Было показано, что недостаток метионина повышает активность сигналов, связанных с рецептором TRAIL-R2. Авторы данной работы проверили, будет ли метиониновый стресс увеличивать чувствительность клеток рака молочной железы к проапоптотическим агонистам TRAIL-R2.

В культуре клеток тройного негативного рака молочной железы, обедненной метионином, было обнаружено повышение экспрессии гена рецептора TRAIL-R2. Это означало повышение чувствительности клеток к агонисту рецептора, который при активации вызывал апоптоз. Было подтверждено, что у здоровых клеток такой эффект дефицита метионина не проявляется. Таким образом, можно избирательно повысить чувствительность опухолевых клеток к агонисту TRAIL-R2.

«Результаты показали, что нехватка метионина оказывает специфический эффект на молекулярные пути, отвечающие за гибель клеток. Уязвимость раковых клеток к лечению, воздействующему на эти пути, таким образом, повышается» , – объясняет д-р Крайнз. «Эта находка действительно впечатляет, т.к. она означает, что соблюдение специальной диеты может повысить эффективность таргетной терапии». И человек, и грызуны способны переносить отсутствие метионина в течение некоторого времени. В эксперименте мышам на обедненной метионином диете с пересаженными опухолями тройного негативного рака молочной железы вводили антитело, связывающееся с рецептором TRAIL-R2. Сочетание изменений питания и препарата было значительно эффективней только лекарственной терапии.

Кстати, наверняка вы знаете, что некоторые животные могут выявить рак обнюхиванием. Дело в том, что раковые клетки, потребляя большие количества метионина, выделяют серные газы, которые и улавливают своим обонянием собаки, натренированные на "запах рака". Собаки определяют рак легких, нюхая дыхание, рак кожи - нюхая кожу, рак толстой кишки, рак мочевых путей, нюхая выделения тех органов.

Высокий уровень гомоцистеина.

Низкометиониновая диета также рекомендуется людям с высоким уровнем гомоцистеина, чаще всего это бывает при мутациях некоторых генов. Метионин не образуется в организме человека, а поступает только с пищей. Тем, у кого есть мутации в генах фолатного цикла (MTHFR, MTR, MTRR), и у кого повышен уровень гомоцистеина, следует избегать продуктов с высоким содержанием метионина, т.к. он повышает гомоцистеин. Но про гомоцистеин будет отдельный разговор.

Ключ к пониманию действия метионина.

Таким образом, влияние метионина на продолжительность жизни зависит от активности особого сигнального белка – киназы TOR, которая в ответ на поступление в клетку аминокислот и ростовых сигналов активирует процессы биосинтеза собственных белков организма и подавляет их утилизацию (аутофагию).

Метионин – аминокислота, с которой начинается биосинтез каждого белка, и ее недостаток неизбежно замедляет белковый обмен и стимулирует аутофагию. Организм интенсивнее освобождается от белков с повреждениями и прочего мусора. С другой стороны, чем меньше образуется в клетке белков, тем лучше вспомогательные системы клетки справляются с укладкой пространственной структуры уже имеющихся белков. А вот при высоком уровне биосинтеза белка возникающий «хаос» может повредить или даже убить клетку, ускоряя старение организма.

Еще несколько аминокислот – лейцин, изолейцин и валин – также стимулируют функцию киназы TOR. Аминокислоты валина больше всего в белке говядины, курицы, горохе, яйце; изолейцином богаты молоко, мясо и яйца; лейцином – молоко, овес, кукуруза. Помимо увеличения максимальной продолжительности жизни, низкометиониновая диета у млекопитающих снижает риск ожирения, повышает устойчивость к болезням печени, снижает уровни инсулина и инсулиноподобного фактора роста и гормонов щитовидной железы.

Решение парадокса.

Поэтому решение парадокса в следующем: чем старше человек, тем больше он должен быть вегетерианцем. Полное ограничение метионина крайне нежелательно, ведь это незаменимая аминокислота, жизненно важная для работы многих систем организма!

Но этот процесс тоже должен быть разумным, чему мы должны поучится у наших предков: если в среднем сложить все посты, то приблизительно половину всего времени наши предки были вегетерианцами, а половину - мясоедами. Разумный подход. Полное веганство не является здоровым питанием, а при низкой диетическоей осведомленности оно способно причинить серьезный вред. Избыток красного мяса, овощей и поничиков - все плохо.

Соблюдайте умеренность - это лучшая стратегия, которая берет начало еще со времен охотников-собирателей. Растительная пища, которую собирали преимущественно женщины, была каждый день. А вот мясо, которое добывали преимущественно мужчины на охоте, было далеко не каждый день. Поэтому мясная пища была у наших предков редкой, но обильной.

Также, когда речь идет о метионине, очень важен контекст питания. Очень часто дело не просто в количестве метионина (см. рисунок внизу), а в том, как он метаболизируется в организме. Поэтому у человека, потребляющего мясо с достаточным количеством овощей, метионин будет метаболизироваться лучше, чем у строгого вегана с дефицитом витамина В 12. Негативные свойства метионина проявляются сильнее всего при дефиците ряда витаминов, особенно фолиевой кислоты и витаминов В6 и особенно В12, а также холина и глицина. Эти соединения находятся в достаточном количестве и в животных продуктах питания. Поэтому фокусируйтесь на разнообразии питания, чтобы обеспечить себе сбалансированный рацион.

Практика низкометиониновой диеты.

Несмотря на научное название, низкометиониновая диета известна всем с давних пор. Наименьшее количество метионина содержат растительные белки, а наибольшее – животные. Поэтому чем медленнее растет человек, тем меньше ему в рационе нужно метионина. Поэтому с 30 лет следует ограничивать мясные и молочные продукты, с 50 еще сильнее ограничить их поступление. Это ограничение не обязательно должно быть постоянным, так же эффективно временное ограничение (пост). Животные белки (мясо, птицу, рыбу) стоит ограничить, частично (но не полностью!) заменив их растительными. Кстати, такое соотношение белков уже показало себя на практике: знаменитое долгожительство населения острова Окинава связывают с характерной для этого острова одноименной диетой, которая является и низкокалорийной, и содержит малое количество животного белка. Овощи и фрукты имеют минимальное содержание метионина (до 10 мг)

Низкометиониновая диета

По ряду причин добровольное ограничение питания никогда не будет пользоваться широкой популярностью у людей, но его может заменить ограничение потребления метионина, что может быть достигнуто использованием преимущественно (но не полностью!) вегетарианской диеты с низким содержанием аминокислоты. Напомню, что для терапевтического эффекта можно делать пост или вегетерианские 2-3 дня в неделю. Растительные белки, особенно из бобовых и орехов, содержат меньше метионина, чем животные белки. Кроме того, общее содержание белка в растительных продуктах ниже, чем в продуктах животного происхождения. о публиковано

1. Метионин - незаменимая аминокислота, необходимая для синтеза белков. Мет-тРНК мет участвует в инициации процесса трансляции каждого белка. Как и многие другие аминокислоты, метионин подвергается транс- и дезаминированию. Особая роль метионина заключается в том, что метильная группа этой аминокислоты используется для синтеза целого ряда соединений в реакциях трансметилирования. Основным донором метильной группы является S-аденозилметионин (SAM) - активная форма метионина, который присутствует во всех типах клеток и синтезируется из метионина и АТФ под действием фермента метионин-аденозилтрансферазы:

Структура -S+-CH 3 в SAM является нестабильной, метильная группа легко отщепляется, что определяет высокую способность ее к переносу на другие соединения в реакциях трансметилирования (рис. 9.20).

Рис. 9.20. Метаболизм метионина

В реакциях трансметилирования SAM превращается в S-аденозилгомо- цистеин (SAr), который гидролитически расщепляется с образованием аденозина и гомоцистеина. Последний может снова превращаться в метионин с участием метил-Н 4 -фолата и витамина В 12 . Регенерация метионина тесно связана с обменом серина и глицина и взаимопревращениями производных Н 4 -фолата (см. рис. 9.20).

2. Метионин и серин необходимы для синтеза условно заменимой аминокислоты цистеина, причем в этом процессе метионин является донором атома серы. Цистеин образуется непосредственно из гомоцистеина в ходе двух реакций, которые происходят с участием пиридоксальфосфата (см. рис. 9.20). Генетический дефект этих ферментов приводит к нарушению использования гомоцистеина в организме и превращению его вгомоцистин.

Гомоцистин может накапливаться в крови и тканях, выделяться с мочой, вызывая гомоцистинурию. Заболевание сопровождается эктопией (смещением) хрусталика глаза, катарактой, остеопорозом, умственной отсталостью (-50% больных). Причиной заболевания могут служить как наследственные нарушения обмена гомоцистеина, так и гиповитаминоз фолиевой кислоты или витаминов В 12 и

SАМ как донор метильной группы участвует в синтезе многих веществ (лецитина, адреналина, карнитина, ацетилхолина, креатина и др.), а также в инактивации нормальных метаболитов и обезвреживании токсических веществ в печени.

3. Синтез фосфатидилхолина (лецитина) наиболее активно протекает в печени, которая использует лецитин на построение мембран и формирование липопротеинов. Реакцию катализирует фосфатидилэтаноламинтрансметилаза.

В клетки других тканей фосфатидилхолин доставляется в составе ЛПНП. Особую роль лецитин играет в метаболизме ЛПВП (см. модуль 8).

4. Синтез карнитина - переносчика ацильной группы в митохондрии - происходит путем метилирования γ-аминомасляной кислоты с участием SAM:

5. Синтез креатина происходит с использованием трех аминокислот:аргинина, глицина и метионина. Процесс начинается в почках, в реакцию вступают аргинин и глицин. Образующийся гуанидинацетат поступает затем в печень, где подвергается метилированию с участием SAM и превращается в креатин. Из печени креатин транспортируется в мышцы и головной мозг.

Креатин в клетках превращается в креатинфосфат - макроэргическое соединение, являющееся резервной формой энергии в мышечной и нервной тканях. Содержание креатинфосфата в покоящейся мышце в восемь раз выше, чем АТФ. Эту реакцию катализирует ферменткреатинкиназа (рис. 9.21).

Рис. 9.21. Схема синтеза и использования креатина

Креатинфосфат играет важную роль в обеспечении работающей мышцы энергией в начальный период физической работы. В работающей мышце концентрация АТФ некоторое время остается постоянной, а концентрация креатинфосфата быстро снижается. Часть образовавшегося креатина и креатинфосфата с постоянной скоростью превращается в креатинин, который выводится с мочой (норма - 1-2 г/сут, или 8,8-17,6 ммоль/л)

При уменьшении массы мышц вследствие длительного отрицательного азотистого баланса, при состояниях, ведущих к атрофии мышц,выделение креатинина снижается (голодание, острые инфекции, сахарный диабет, гипертиреоз и т.д.). Определение содержания в крови креатина и креатинина используется для диагностики заболеваний, а также как показатель эффективности работы мышц в спортивной медицине.

Метионин – незаменимая аминокислота, то есть не синтезируется в организме человека. Поэтому метионин должен постоянно поступать в организм вместе с пищей. Метионин входит в состав белка, который является одним из главных «строительных материалов» человеческого организма. Эта аминокислота не только входит в состав белков, но также является основой множества жизненно необходимых веществ.

Какие же соединения даёт метионин?

  • Метионин в организме переходит в аминокислоту цистеин, которая является предшественником вещества глутатиона. Это очень важно при отравлениях, когда требуется большое количество глутатиона для обезвреживания токсинов и защиты печени.
  • Метионин служит в организме источником химических групп и элементов при биосинтезе гормона адреналина, медиатора холина, необходимого для передачи нервного импульса, и др., а также является источником серы при биосинтезе цистеина.
  • Определённые соединения метионина (метил-метионин-сульфоний – в фармакологии известен как «метиосульфония хлорид», или «витамин U») обладают выраженным цитопротективным действием на слизистую желудка и двенадцатиперстной кишки, то есть способствуют заживлению язвенных и эрозивных поражений слизистой желудка и двенадцатиперстной кишки.
  • Метионин необходим человеческому организму при дефиците витамина В12. Нарушение образования цистеина из метионина – это одна из причин неврологических нарушений при дефиците витамина В12. Возникает дефицит активного метионина, нарушается синтез холина и содержащих холин фосфолипидов – лецитина и сфингомиелина, которые являются компонентами нервной ткани. Поражение нервной системы при дефиците витамина В12 обусловлено, во всяком случае отчасти, нарушением синтеза этих соединений из-за недостатка метионина.

Какова роль метионина в метаболизме?

Особая роль этой аминокислоты в обмене веществ связана с тем, что она содержит подвижную метильную группу (-СНз), которая может передаваться на другие соединения. Способностью метионина отдавать метильную группу обусловлен его липотропный эффект (удаление из печени избытка жира).
Отдавая подвижную метильную группу, метионин способствует синтезу холина, с недостаточным образованием которого связаны нарушение синтеза фосфолипидов из жиров и отложение в печени нейтрального жира. Липотропным свойством обладает также белок казеин (и содержащий его творог), который имеет в составе значительное количество метионина.
Метионин участвует в синтезе адреналина, креатина и других биологически важных соединений; активирует действие гормонов, витаминов (В 12 , аскорбиновой и фолиевой кислот), ферментов. Как известно, основными регуляторами метаболизма в человеческом организме являются ферменты, что доказывает важность метионина, входящего в их состав.
Если нарушается метаболизм, то организм человека «теряет равновесие», что неотвратимо приводит кразного рода расстройствам и заболеваниям.

Путем метилирования (отдачи -CH3-группы) метионин обезвреживает токсичные продукты. Применяют метионин для лечения и предупреждения заболеваний и токсических поражений печени (цирроз, поражения мышьяковистыми препаратами, хлороформом, бензолом и другими веществами), а также при хроническом алкоголизме, сахарном диабете и др. Эффект более выражен при жировой инфильтрации клеток печени. При вирусном гепатите применять метионин не рекомендуется.
Метионин назначают для лечения дистрофии, возникающей в результате белковой недостаточности у детей и взрослых после дизентерии и других хронических инфекционных заболеваний.

Метионин способствует снижению содержания холестерина в крови, уменьшению отложения жира в печени и улучшению функции печени, может оказывать умеренное антидепрессивное действие (по-видимому, за счёт влияния на биосинтез адреналина).

Также нельзя забывать, что метионин лежит в основе образования вещества креатина, необходимого для тех, кто желает увеличить мышечную массу, а также держать своё тело в отличной форме!

Метионин требуется при следующих состояниях и заболеваниях:

  • Синдром хронической усталости
  • Болезнь Альцгеймера
  • Рассеянный склероз
  • Ревматоидный артрит
  • Желчекаменная болезнь
  • Гепатиты
  • Предменструальный синдром
  • Фиброзно-кистозная мастопатия
  • Алкоголизм
  • Ожирение
  • Фибромиалгия
  • Болезнь Паркинсона
  • Атеросклероз
  • Диабет
  • Остеоартрит
  • Цирроз
  • Раннее старение кожи
  • Ухудшение состояния волос
  • Ломкость и расслоение ногтей

Как можно заметить, список нарушений при дефиците метионина огромен. Это доказывает его крайнюю необходимость для человеческого организма. Метионин также применяют в комплексной терапии токсикоза беременности.Он также необходим для синтеза нуклеиновых кислот, коллагена и многих других белков. Его полезно потреблять женщинам, принимающим оральные гормональные контрацептивы.

Есть мнение…

Традиционно метионин относят к антиоксидантам и факторам, предотвращающим старение. Существует мнение, что ограничение потребления метионина приводит к увеличению продолжительности жизни. По этому поводу было много споров, но в конечном итоге многими учёными и специалистами было доказано, что это мнение неверно. Напротив, метионин играет роль своеобразного «стабилизатора жизни», спасая организм от многих перечисленных ранее заболеваний.

Нельзя забывать, что метионин – важная аминокислота, которая необходима организму для обеспечения протекания множества процессов. Надо помнить, что эта аминокислота незаменимая и должна постоянно поступать в организм с пищей.

Метаболизм метионина зависит от различных регуляторных систем, в том числе и от действия гормонов. Он является фактором, который определяет сопротивляемость стрессу, а в конечном итоге здоровье и продолжительность жизни.

Способ применения и дозы

Назначают внутрь 3 – 4 раза в день. Разовая доза для взрослых 0,5 – 1,5 г, для детей до 1 года – 0,1 г, до 2 лет – 0,2 г, от 3 до 4 лет – 0,25 г, от 5 до 6 лет – 0,3 г, от 7 лет и старше – по 0,5 г. Принимают за полчаса до еды. Курс лечения продолжается 10 – 30 дней. Препарат можно назначать также курсами по 10 дней с 10-дневными перерывами. При рвоте метионин отменяют.

Основные натуральные источники

Больше всего встречается в говяжьем и курином мясе, в говяжей печени и треске, достаточно много содержится в твороге, куриных яйцах; крупах (по убыванию) рисовой, пшенной, овсяной, гречневой, перловой, пшеничной, манной; в горохе, макаронах и уже меньше в молоке/кефире и хлебе. Также присутствует в бананах, бобах, фасоли, чечевице и сое.

Друзья, добрый день. Сегодня поговорим о метионине, гомоцистеине и о том, как эти вещества влияют на продолжительность жизни.

МЕТИОНИН – РОЛЬ В ОРГАНИЗМЕ И ЕГО ВЛИЯНИЕ НА ПРОЦЕСС СТАРЕНИЯ

Метионин – это особое вещество, которое жизненно необходимо для человека. Метионин не вырабатывается организмом, поэтому человек пополняет его запасы вместе с пищей.

Метионин – это аминокислота, а значит это антиоксидант, который должен предотвращать процесс старения и омолаживать клетки тела. Однако многие исследования доказывают обратное – ограниченное потребление продуктов, богатых метионином, способствуют продлению жизни.

Почему так получается, что за парадокс? Давайте разбираться.

А вообще, медики широко используют метионин для лечения и профилактики таких серьёзных заболеваний, как: болезнь Паркинсона, Альцгеймера, диабет, цирроз, мастопатии.

Кроме того, метионин принимают: от раннего старения кожи, при ломкости ногтей, атеросклерозе, рассеянном склерозе, алкоголизме, хронической усталости и мн. др.

О связи метионина и старением – одна из версий

Единого мнения у учёных об этом феномене нет, но на данный момент наиболее правдоподобной считается следующая версия.

Ограничение потребления пищи расценивается организмом, как угроза жизни от голода. Голодание – это вероятность снижения плодовитости, а значит голодание — это прямая угроза всему виду. Организм на такую возможную угрозу реагирует увеличением продолжительности жизни и удлинением его репродуктивной функции.

Поэтому учёные посчитали, что организм вычисляет объём потреблённой пищи не по съеденным калориям, а по количеству метионина в организме. Кроме того, есть мнение о том, что именно по количеству метионина организм вычисляет и количество других аминокислот, необходимых для образования белков.

Метионин активизирует киназу mTOR, что провоцирует быстрое старение

Давайте рассмотрим ещё один фактор того, что метионин способствует быстрому старению.

Киназа mTOR – это внутриклеточное вещество (протеин), которое ответственно за координацию метаболизма клетки.

От её активности зависит очень многое, к примеру, продолжительность жизни. Всё дело в том, что активизированная Киназа mTOR сокращает продолжительность жизни из-за того, что при таком возбуждении вырабатываются всё новые и новые белки, в то время как старые белки ещё полностью не распались.

А если сказать по-простому: «Когда Киназа mTOR активизирована, происходит то, что не утилизированный белковый «мусор» засоряет весь организм, отчего организм ускоренно стареет».

А пишу я вам это от того, что именно метионин и ещё некоторые аминокислоты как раз и активизируют, возбуждают белок Киназу mTOR и это уже не предположение, а факт.

Метионин и гомоцистеин – ещё один фактор старения

Гомоцистеин – это кислота, которая является продуктом переработки метионина. Следует понимать, что чем больше в организме метионина, тем больше и гомоцистеина. Кроме того, гомоцистеин способен накапливаться в организме, а его повышенное содержание провоцирует образование холестериновых бляшек.

Учеными доказано, что повышение концентрации гомоцистеина в крови на 5 мкмоль/л повышает риск атеросклероза на 60 % у женщин и 80 % у мужчин

Кроме того, повышенное содержание гомоцистеина повышает риск развития болезни Паркинсона и Альцгеймера.

Стоит ли полностью отказаться от метионина?

Правильный рецепт молодости и продления жизни.

Как я уже писал в начале поста: «Метионин – незаменимая аминокислота», а это значит одно — она просто необходима для жизни. И действительно, именно с метионина начинается процесс синтеза белков.

Действие метионина двоякое – с одной стороны это антиоксидант, способствующий омоложению, с другой стороны, именно метионин запускает некоторые процессы в организме, способствующие старению.

«Что тогда делать?» — спросите вы.

Правильный рецепт только один – необходимо найти золотую середину потребления метионина, с учётом вашего возраста.

ЧЕМ СТАРШЕ ВОЗРАСТ ЧЕЛОВЕКА, ТЕМ МЕНЬШЕ ПРОДУКТОВ ПИТАНИЯ БОГАТЫХ МЕТИОНИНОМ, НАДО ПОТРЕБЛЯТЬ С ПИЩЕЙ.


МЕТИОНИНОВАЯ ДИЕТА – РЕЦЕПТ МОЛОДОСТИ

Есть высказывания о том, что если постоянно «сидеть» на «метиониновой диете», то можно запросто прожить до 100 лет.

Учёные считают, что начиная с 30 лет, человек должен начинать ограничивать поступление метионина с пищей. То есть, уже с 30 лет, надо сократить потребление: мясных, рыбных и молочных продуктов. Особенно много метионина в сырах — в 2-3 раза больше чем в мясе, поэтому его надо ограничивать в потреблении в первую очередь.

К 50-ти годам следует свести употребление животных белков к минимуму, потребляя их в норме 2-3 раза в неделю.

Вообще полностью отказываться от животных белков не следует – это так же вредно для полноценной жизни.

Так как минимальное содержание метионина содержится в продуктах растительного происхождения, то именно они и должны занимать львиную долю рациона взрослого человека, особенно для человека в преклонном возрасте.

Каши, овощи и фрукты – вот такая основа здорового питания, обеспечит вам долгую жизнь без старости. Хотите в верьте, хотите нет, но пост во многих религиях – это тоже «средство», которое продлевает жизнь и молодость человеку.

КАК СНИЗИТЬ УРОВЕНЬ МЕТИОНИНА ДРУГИМИ СПОСОБАМИ

О том, что витамины полезны, мы знаем с детства, но не все знают о том, что витамины группы B продлевают жизнь и молодость из-за того, что они активны по отношению к гомоцистеину.

Как я уже писал ранее, именно гомоцистеин, а не метионин, как таковой, наносит вред организму. Всё дело в том, что витамины группы B способны «превращать» гомоцистеин обратно в метионин.

Особенно важны в этом плане витамины: B1, B6, . Поэтому следует включить в свой рацион питания продукты, богатые этими витаминами: фасоль, орехи, ячневую крупу, брокколи, облепиху.

Если у вас не усваивается витамин B12, то следует его «проколоть», с периодичностью: раз в полгода.

НА ЭТУ ТЕМУ ПРО ВИТАМИНЫ.